考慮到我國的環(huán)境狀況,國家對煤電企業(yè)的環(huán)境監(jiān)管日益嚴格,燃煤電廠在選擇超低排放技術路線時,應選擇技術上成熟可靠、經(jīng)濟上合理可行、運行上長期穩(wěn)定、易于維護管理、具有一定節(jié)能效果的技術。煙氣污染物超低排放技術路線選擇時應遵循“因煤制宜,因爐制宜,因地制宜,統(tǒng)籌協(xié)同,兼顧發(fā)展”的基本原則?
因煤制宜,不僅要考慮設計煤種、校核煤種,更要考慮隨著市場變化,電廠可能燃燒的煤種與煤質(zhì)波動,要確保在燃用不利煤質(zhì)條件下,污染物能夠實現(xiàn)超低排放。例如,對于煤質(zhì)較為穩(wěn)定?灰份較低、易于荷電、灰硫比較大的煙氣條件,選擇低低溫電除塵器+復合塔脫硫系統(tǒng)協(xié)同除塵作為顆粒物超低排放的技術路線,不失為是一種經(jīng)濟合理的選擇。
對于煤質(zhì)波動大、灰份較高、荷電性能差、灰硫比較小的煙氣條件,則應優(yōu)先選擇電袋復合除塵器或袋式除塵器進行除塵,后面是否加裝濕式電除塵器,則取決于除塵器的出口濃度以及后面采用的脫硫工藝的協(xié)同除塵效果,濕式電除塵器是應對不利因素的最佳選擇?
因爐制宜,主要是考慮不同爐型對飛灰成份與性質(zhì)的影響?如循環(huán)流化床鍋爐,適用于劣質(zhì)燃料的燃燒,通常灰份含量高,顆粒粒徑較煤粉爐大,排煙溫度也普遍較高,可根據(jù)實際燃燒煤質(zhì)情況選擇除塵方式?
對于燃燒熱值較高煤炭的循環(huán)流化床,可選用余熱利用的低低溫電除塵器,對于燃燒煤矸石等劣質(zhì)燃料的循環(huán)流化床鍋爐宜采用電袋復合除塵器或袋式除塵器?燃用無煙煤或低揮發(fā)份煤的W型火焰鍋爐或者煤粉爐,則要關注飛灰中的含炭量,炭的存在影響電除塵器的除塵效率?
因地制宜,既要考慮改造機組的場地條件,也要考慮機組所處的海拔高程?如采用雙塔雙pH值脫硫工藝?加裝濕式電除塵器?增加電除塵器的電場數(shù)等一般都需要場地或空間條件?對于高海拔的燃煤電廠,還應考慮相應高程的空氣影響煙氣條件,從而影響電除塵器的性能?
統(tǒng)籌協(xié)同,煙氣超低排放是一項系統(tǒng)工程,各設施之間相互影響,在設計?施工?運行過程中,要統(tǒng)籌考慮各設施之間的協(xié)同作用,全流程優(yōu)化,實現(xiàn)控制效果好?運行能耗低?成本最經(jīng)濟的最佳狀態(tài)?
兼顧發(fā)展,就是不僅要滿足現(xiàn)在的排放要求,還應考慮排放要求的發(fā)展以及技術?市場的發(fā)展變化?如目前我國燃煤電廠排放要求中,對煙氣中的三氧化硫排放沒有要求,對汞及其化合物的排放要求還比較寬松,技術路線選擇時就應考慮下一步排放限值的發(fā)展?此外,污染防治技術也在不斷發(fā)展,需要考慮技術進步及其改造的可能性?煤炭市場?電力市場等均處于不斷變化之中,煤質(zhì)穩(wěn)定性有無保障,電力負荷的變化與煤電深度調(diào)峰對煙氣成份的影響等等,在選擇技術路線時可能都需要考慮?
總之,燃煤電廠煙氣污染物超低排放技術路線的選擇既要考慮一次性投資,也要考慮長期的運行費用;既要考慮投入,也要考慮節(jié)能減排的產(chǎn)出效益;既要考慮技術的先進性,也要考慮其運行可靠性;既要考慮超低排放的長期穩(wěn)定性,也要考慮故障時運行維護的方便性;既要立足現(xiàn)在,也要兼顧長遠?
顆粒物超低排放技術路線
燃煤電廠要想實現(xiàn)顆粒物超低排放,至少面臨二方面技術的選擇?
一是煙氣脫硝后煙氣中煙塵的去除,可以稱之為一次除塵技術,主流技術包括電除塵技術?電袋復合除塵技術和袋式除塵技術,電除塵技術通過采用高效電源供電?先進的清灰方式以及低低溫電除塵技術等有機組合,可以實現(xiàn)除塵效率不低于99.85%,電袋復合除塵器及袋式除塵器可以實現(xiàn)除塵效率不低于99.9%?
二是煙氣脫硫過程中對顆粒物的協(xié)同脫除或是脫硫后對煙氣中顆粒物的脫除,可以稱之為二次除塵或深度除塵,對于復合塔工藝的石灰石-石膏濕法脫硫,采用高效的除霧器或在濕法脫硫塔內(nèi)增加濕法除塵裝置,協(xié)同除塵效率一般大于70%,濕法脫硫后加裝濕式電除塵器,顆粒物去除效果一般均在70%以上,且除塵效果較為穩(wěn)定;對于干法?半干法脫硫,脫硫后煙氣中顆粒物濃度較高,均是采用袋式除塵器或電袋復合除塵器,如不能實現(xiàn)顆粒物超低排放要求,也需加裝濕式電除塵器?
具體工程實際選擇時需要結合工程實際情況,具體分析,考慮到各種技術的原理?特點及適用性?影響因素?能耗?經(jīng)濟性?成熟度等因素,綜合考慮給出燃煤電廠顆粒物超低排放技術路線,見表19?
二氧化硫超低排放技術路線
1.1 超低排放需要的脫硫效率
不同脫硫入口濃度滿足超低排放要求時,需要不同的脫硫效率,為實現(xiàn)穩(wěn)定超低排放,脫硫塔出口SO2濃度按30mg/m3控制,則可以算出,入口濃度1000mg/m3時,脫硫效率需不低于97%;入口濃度2000mg/m3時,脫硫效率需不低于98.5%;入口濃度3000mg/m3時,脫硫效率需不低于99%;入口濃度6000mg/m3時,脫硫效率需不低于99.5%;入口濃度10000mg/m3時,脫硫效率不低于99.7%?
脫硫塔入口濃度范圍是超低排放應嚴格控制的條件,新建機組技術選擇相對簡單,而現(xiàn)役機組的應用技術?裝備條件?場地等對技術選擇影響很大?
1.2 超低排放脫硫技術路線的選擇
對于濱海電廠且海水擴散條件較好,符合近岸海域環(huán)境功能區(qū)劃要求時,對于入口SO2濃度低于2000mg/m3的電廠,可以選擇先進的海水脫硫技術?
對于缺水地區(qū),吸收劑質(zhì)量有保證,入口SO2濃度低于1500mg/m3的300MW級以下的燃煤機組,可以選擇煙氣循環(huán)流化床脫硫技術;結合循環(huán)流化床鍋爐的爐內(nèi)脫硫效率,可以應用于300MW級以下的中等含硫煤的循環(huán)流化床機組?
對于氨水或液氨來源穩(wěn)定,運輸距離短,且電廠附近環(huán)境不敏感,300MW級以下的燃煤機組,可以選擇氨法脫硫?
其他情況下主要采用石灰石-石膏濕法脫硫,對于脫硫效率要求在97%以下時,可以選擇傳統(tǒng)空塔噴淋提效技術;對于脫硫效率要求在98.5%以下時,可以選擇復合塔脫硫技術中的雙托盤塔?沸騰泡沫塔等;對于脫硫效率要求在99%以下時,可以選擇旋匯耦合?雙托盤塔等技術;對于脫硫效率要求在99.5%以下時,可以選擇單塔雙pH值?旋匯耦合技術;對于脫硫效率要求在99.7%以下時,可以選擇雙塔雙pH值?旋匯耦合技術?
當然,脫硫效率較高的脫硫技術能滿足脫硫效率較低的要求,技術選擇時應同時考慮經(jīng)濟性?可靠性?詳見表20?
氮氧化物超低排放技術路線
鍋爐低氮燃燒技術是控制氮氧化物的首選技術,在保證鍋爐效率和安全的前提下應盡可能降低鍋爐出口氮氧化物的濃度?
對于煤粉鍋爐,應通過燃燒器改造和爐膛燃燒條件的優(yōu)化,確保鍋爐出口氮氧化物濃度小于550mg/m3?爐后采用SCR煙氣脫硝,通過選擇催化劑層數(shù)?精準噴氨?流場均布等措施保證脫硝設施穩(wěn)定高效運行,實現(xiàn)氮氧化物超低排放?
對于循環(huán)流化床鍋爐,應通過燃燒調(diào)整,確保氮氧化物生成濃度小于200mg/m3?通過加裝SNCR脫硝裝置,實現(xiàn)氮氧化物超低排放;如不能滿足超低排放要求,可在爐后增加SCR,采用一層催化劑?
對于燃用無煙煤的W型火焰鍋爐,也應在保證鍋爐效率和安全的前提下盡可能降低鍋爐出口氮氧化物的濃度?但目前尚難以做到較低,僅靠爐后的SCR較難穩(wěn)定滿足氮氧化物的超低排放要求,國內(nèi)外尚無成功案例,需要進一步研究?
各種爐型氮氧化物超低排放技術路線見表21?